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Abstract

An unstructured-mesh-based finite element method is employed to simulate two-dimensional nonlinear interactions

between waves and non-wall-sided floating structures. The velocity potential theory is adopted and the potential is

obtained at each time step through solving a matrix equation based on the Galerkin method. The boundary conditions

on the free surface are satisfied in the Lagrangian form and the information is updated through the fourth-order

Runge–Kutta method. Remeshing based on B-splines is applied regularly to avoid over-distorted elements, and

smoothing based on a method using the energy of a curve defined through its nodes is applied to improve the stability of

the results. Comparison is made with published results for transient wave motion in a tank to validate the present

method. Extensive simulation is made for wedge-shaped bodies in vertical and horizontal motions, and comparison is

made with the solution from second-order theory. Results are also provided for wedges in a tank, for wedges in large

motion relative to water depth and for twin wedges.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In the last decade, there have been extensive applications of the finite element method (FEM) to fully nonlinear

wave–body interaction problems. Wu and Eatock Taylor (1994) used both the FEM and the mixed FEM to analyze the

two-dimensional (2-D) nonlinear transient water wave problems. Wu and Eatock Taylor (1995) subsequently made

detailed comparison between FEM and the boundary element method (BEM) for the nonlinear free surface flow

problem and found that the former was more efficient in terms of both CPU and memory requirement. Later, Ma et al.

(2001a, b) extended the technique to simulate interactions between waves and 3-D fixed structures in numerical tanks,

and Hu et al. (2002) to the case of a vertical cylinder in forced motions. Robertson and Sherwin (1999) adopted an hp-

element technique to simulate the 2-D free surface flow problem. Recently, the FEM was also used by Robertson et al.

(2004) for 2-D free-surface flow problems with viscous effects. Other FEM-based simulations include those by Clauss

and Steinhagen (1999), Westhuis (2001) and Wang and Khoo (2005).

The publications mentioned above have mainly used structured meshes. A structured mesh is easier to generate but

may become ineffective if the fluid domain is complex due to the geometry of the body or large motion of the
e front matter r 2006 Elsevier Ltd. All rights reserved.
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boundaries. In this case, an unstructured mesh will be more suitable. Greaves et al. (1997) employed quad-tree-based

unstructured meshes to model fully nonlinear waves. Zhu et al. (2001) used a similar meshing procedure to simulate

interactions of submerged cylinders and viscous flow with a free surface. Turnbull et al. (2003) adopted a coupled

structured and unstructured mesh technique to simulate 2-D wave–body interactions. In 3-D, Wu and Hu (2004) used

an unstructured mesh in the horizontal plane and a structured mesh in the vertical direction.

All these applications are either for submerged bodies or for wall-sided floating bodies where the body surface at the

moving waterline is always vertical to the still water level. In fact, the nonlinear effect will become more significant for a

non-wall-sided body. From the computational point, the presence of the flare makes the mesh generation more

complex, especially in the area near the intersection of the body surface and the free surface. The slope or the curvature

of the body near the waterline also makes it more difficult to trace the movement of the waterline in the nonlinear

simulation. In this paper, we use a mesh generator called BAMG (Hecht, 1998) to generate an unstructured mesh in the

fluid domain. It is based on the Delaunay algorithm and needs information only on the boundary as the input.

Simulations are first made for wave motions in a rectangular tank and for progressive waves in a numerical tank, and

results are compared with published data for validation. The focus of this work is on a wedge either in forced large

amplitude motion or in nonlinear waves in a numerical tank, and on twin wedges. The wedge has been widely

investigated for the water entry problem and an extensive survey of the work in this area has been given in Wu et al.

(2004). This is a good example of a non-walled body, and results for this case can provide valuable information on the

nature of wave interactions with some complicated body shapes.
2. Mathematical formulation

The 2-D problem considered here is illustrated in Fig. 1 which shows a floating body oscillating with large amplitude

in otherwise calm water. A Cartesian coordinate system is defined so that the x-axis coincides with the undisturbed free

surface and the y-axis is positive upwards. The free surface and the body surface are denoted as Sf and Sb, respectively.

The seabed is assumed horizontal along the plane y ¼ �h. With the fluid assumed incompressible and inviscid, and the

flow irrotational, the fluid motion can be described by a velocity potential f, which satisfies the Laplace equation within

the fluid domain O, or

r2f ¼ 0 in O. (1)

The boundary conditions on the instantaneous free surface Sf or y ¼ Z can be written as

qf
qt
þ gZþ

1

2
jrfj2 ¼ 0 on Sf , (2)

qf
qy
�

qZ
qt
�

qf
qx

qZ
qx
¼ 0 on Sf , (3)

where t and g denote time and acceleration due to gravity, respectively. These equations can also be written in the

Lagrangian form

df
dt
¼ �gZþ

1

2
rfrf, (4)
x1x0

Ω h
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S
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S
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Fig. 1. Coordinate system.
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dx

dt
¼

qf
qx
;

dy

dt
¼

qf
qy

. (5)

On the body surface, the boundary condition can be given as

qf
qn
¼ Vn on Sb, (6)

where Vn is the body surface velocity in its normal direction ~n ¼ ðnx; nyÞ which is positive away from the fluid domain.

To satisfy the radiation condition, an artificial damping zone is employed to absorb the incoming wave and minimize

the reflection. This is achieved through adding a damping term in Eqs. (4) and (5), or

df
dt
¼ �gZþ

1

2
rfrf� nðxÞf, (7)

dx

dt
¼

qf
qx
;

dy

dt
¼

qf
qy
� nðxÞy, (8)

where n(x) is the damping coefficient

nðxÞ ¼
ao
jxj � x0

l

� �2

for x0pjxjpx1 ¼ x0 þ bl;

0 for jxjox0;

8><
>:

o and l in the last equation are a wave frequency and linear wavelength, respectively, and a and b can be taken as 1 as

suggested by Tanizawa and Swada (1996) based on their numerical experiment. When the damping zone is efficient over

its length bl, there should be no wave of significance remaining at the far end. Thus the boundary condition on Sc can

be written as

qf
qn
¼ 0 on Sc. (9)

To complete the boundary value problem, the initial condition is given as

fðx; y ¼ x; t ¼ 0Þ ¼ f0ðxÞ; Zðx; t ¼ 0Þ ¼ xðxÞ, (10)

in which f0 and x are known functions.

Once the potential is found, the pressure in the fluid may be obtained from the Bernoulli equation,

p ¼ �r
qf
qt
þ

1

2
jrfj2 þ gy

� �
. (11)

The hydrodynamic force acting on the body can be expressed as

~F ¼

Z
Sb

p~nds. (12)

In this equation, the derivative of velocity potential f with respect to time t is not explicitly given, even when the

potential itself has been found at each time step. It could be calculated by a backward finite difference method. This,

however, is not always convenient when remeshing is applied and could cause instability for the motion of a free-

floating body as it leads to many spikes in the force history. Here we use the method developed by Wu and Eatock

Taylor (1996, 2003). They introduced some auxiliary functions to circumvent the need of calculating the derivative of

the potential with respect to time so that the force can be found directly before the pressure itself is known.
3. Numerical procedures

An essential part of CFD simulations is the mesh generation. Here the 2-D unstructured mesh is generated using a

2-D generator called BAMG (Hecht, 1998). It is based on the Delaunay algorithm and is found to be suitable

for handling complex geometry shapes. It needs element information on the boundary, which includes its number

and the coordinates of two nodes at both ends. A typical unstructured triangular mesh for a floating wedge is shown in

Fig. 2.



ARTICLE IN PRESS

Fig. 2. An unstructured mesh for a floating wedge.
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After the mesh is generated, the velocity potential f can be expanded in terms of the shape function NJ ðx; yÞ:

f ¼
Xn

J¼1

fJNJ ðx; yÞ, (13)

where fJ is the velocity potential at node J and n is the number of nodes. Based on the Galerkin method, we haveZ Z
O
r2fNI dO ¼ 0.

From Green’s identity and the boundary conditions, this equation becomesZ Z
O
rNI

Xn

J¼1
ðJeSp Þ

fJrNJ dO ¼
Z

Sn

NI f n dS

�

Z Z
O
rNI

Xn

J¼1
ðJ2SP Þ

ðf PÞJrNJdO ðIeSpÞ, ð14Þ

where Sp represents the Dirichlet boundary on which the velocity potential, denoted by fp, is known, and Sn represents

the Neumann boundary on which the normal derivative of the velocity potential, denoted by fn, is known. The equation

can further be written in the matrix form:

½K �ffg ¼ fFg, (15)

where

ffg ¼ ½f1;f2; . . . ;fI ; . . . ;fn�
T ðIeSpÞ,

KIJ ¼

Z Z
O
rNIrNJ dO ðIeSp & JeSpÞ,

FI ¼

Z
Sn

NI f n dS �

Z Z
O
rNI

Xn

J¼1
ðJ2Sp Þ

ðf pÞJrNJ dO ðIeSpÞ.

This linear matrix equation is then solved through the conjugate gradient (CG) method with a symmetric successive

over-relaxation (SSOR) preconditioner.

The global matrix [K] is generally sparse and symmetric. In order to take advantage of the fact that there is a large

number of zero elements, we use the compressed sparse row (CSR) format to store [K]. A data structure called a linked

list (Dale, 1998) is very convenient and efficient for storing the nonzero elements in [K]. Each node in the list contains

the column number and value of the nonzero element. The index system can be easily obtained from the list using

assignment and addition operations.

After the potential is obtained by solving Eq. (15), the velocity can be obtained by using the procedure developed by

Wu and Eatock Taylor (1994). We first expand the velocity in a manner similar to that in Eq. (13). The Galerkin

method is then applied to ~u ¼ rf, which meansZ Z
O
ð~u� rfÞNIdO ¼ 0. (16)
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This givesZ Z
O
~uNI dO ¼

Z Z
O
rfNI dO, (17)

which in matrix form becomes

½A�f~ug ¼ ½~B�ffg, (18)

where

AIJ ¼

Z Z
O

NI NJ dO; ~BIJ ¼

Z Z
O

NIrNJ dO.

Eq. (18) can be solved through a procedure similar to that used for Eq. (15).

The fourth-order Runge–Kutta method is adopted for the integration with respect to time to up-date the wave

elevation and the potential on the free surface. This method is particularly advantageous when remeshing is used

regularly. For other methods of similar order of accuracy, information at the last few time steps is required, which can

be problematic if they all correspond to different meshes. The Runge–Kutta method uses mini steps within each time

step and all the information required for integration over the time step corresponds to the same mesh.

Let P denote one of these three variables (x,y,f). If Pn is the value at time step nDt, the new value at t ¼ ðnþ 1ÞDt can

be obtained through the following equation (Engeln-Müllges and Uhlig, 1996):

Pnþ1 ¼ Pn þ
Dt

8
ðk1 þ 3k2 þ 3k3 þ k4Þ, (19)

where

ki ¼
d

dt
P nDtþ

i � 1

3
Dt;Qnþði�1Þ=3

� �� �
ði ¼ 1; 2; 3; 4Þ

and

Qn ¼ Pn; Qnþ1=3 ¼ Pn þ
Dt

3
k1,

Qnþ2=3 ¼ Pn þ Dt �
1

3
k1 þ k2

� �
; Qnþ1 ¼ Pn þ Dtðk1 � k2 þ k3Þ.

When the simulation is over a substantial period of time, the nodes on the free surface may cluster or stretch. In order

to avoid over-distortion of elements, nodes on the free surface should be rearranged every several time steps. We adopt

the following procedure, results from which are shown in Fig. 3 by way of example. Suppose there are nþ 1 nodes Pi

(xi,yi) (i ¼ 0,1,y,n) on a curve. We may interpolate any point on the curve between nodes Pi and Pi+1 using B-splines.

We use the uniform cubic B-spline to express the point as

PðuÞ ¼
X3
j¼0

Bj;3ðuÞViþj ði ¼ 0; 1; . . . ; nÞ, (20)

where u varies from 0 at i to 1 at i þ 1; Bj;3ðuÞ are cubic B-spline functions and may be expressed as

B0;3ðuÞ ¼
1

6
ð1� uÞ3; B1;3ðuÞ ¼

1

6
ð3u3 � 6u2 þ 4Þ,

B2;3ðuÞ ¼
1

6
ð�3u3 þ 3u2 þ 3uþ 1Þ; B3;3ðuÞ ¼

1

6
u3, ð21Þ

and Vi+j are control points. The whole curve is then forced to pass through all the points Pi, which means

Pið0Þ ¼
1

6
ðVi þ 4Viþ1 þ Viþ2Þ ði ¼ 0; 1; . . . ; nÞ. (22)

In matrix from, this becomes

½A�½V� ¼ ½P�, (23)
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Fig. 3. Curve smoothing: (a) 30 nodes and lmin ¼ 0:173; (b) 100 nodes and lmin ¼ 0:051.
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where [A] is a tridiagonal matrix, [V] and [P] are vectors consisting of the control points Vi and nodes Pi, respectively,

½A� ¼

6 0

1 4 1

1 . .
. . .

.

. .
. . .

.
1

. .
.

4 1

0 6

2
66666666664

3
77777777775
; ½V� ¼

V0

V1

..

.

Vnþ2

2
66666664

3
77777775
; ½P� ¼ 6

P�1

P0

..

.

Pnþ1

2
66666664

3
77777775
.

The boundary points V0 and Vn+2 are set to be P�1 and Pn+1, respectively, and P�1 and Pn+1 may be obtained from

P�1 ¼ 2P0 � P1; Pnþ1 ¼ 2Pn � Pn�1.

The arc length from node Pi to P0 may be calculated by the following equation:

Si ¼
Xi

k¼0

Z 1

0

ds

du

� �
k

du ði ¼ 0; 1; . . . ; nÞ, (24)

where

ds

du

� �
i

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx

du

� �2

þ
dy

du

� �2
s

and
dx

du
;
dy

du

� �
¼

dPðuÞ

du
¼
X3
j¼0

dBj;3

du
Viþj .

We then divide the curve into m segments. The size of each segment can be chosen based on the local flow character.

If we wish to have smaller elements near P0 and larger elements near Pn for example, we can adopt the following

procedure (Chung, 2002). Suppose that the new nodes are Pi;rði ¼ 0; 1; . . . ;mÞ. The arc length Si;r from node P0,r to Pi,r
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can be obtained from

Si;r ¼ Sn

ðbþ 1Þ � ðb� 1Þ ðbþ 1=b� 1Þ
� �1�i=m

ðbþ 1=b� 1Þ
� �1�i=m

þ 1
ði ¼ 0; 1; . . . ;mÞ, (25)

where b41 is a constant and it controls distribution of the nodes. A larger value of b will give a more uniform

distribution.

In addition to node clustering and stretching, it is not unusual to see saw-tooth behaviour in the time domain

simulations of water waves. Longuet-Higgins and Cokelet (1976) used the following smoothing scheme:

f̄ i ¼
1

16
ð�f i�2 þ 4f i�1 þ 10f i þ 4f iþ1 � f iþ2Þ (26)

to eliminate such behaviour. But this is applicable only to nodes with equal spacing in the x direction. Here the

distribution of nodes is irregular, and we shall use the following energy method for smoothing (Zhu, 2000). Suppose

there is a discrete set of nodes defined through position vectors Qi (i ¼ 0,1,y,n), and nodes Qi become Pi after

smoothing. We define the energy of a curve with nodes Pi (i ¼ 0,1,y,n) as

Ec ¼
Xn�1
j¼1

1

li þ liþ1
ðeiþ1 � eiÞ

2, (27)

where li ¼ Qi �Qi�1

�� �� is the distance between Qi and Qi�1; ei in Eq. (27) is defined as ei ¼ ðpi � pi�1Þ=li, where

piði ¼ 0; 1; . . . ; nÞ is either the x or y coordinate of node Pi. The smoothing process should ensure that the difference

between Pi and Qiði ¼ 0; 1; . . . ; nÞ is as little as possible. In order to achieve this, we define an objective function as

Fc ¼ aEc þ
Xn

j¼0

bjðpj � qjÞ
2, (28)

where a and bj are constants, qiði ¼ 0; 1; . . . ; nÞ is either the x or y coordinate of node Qi. Substituting Eq. (27) into

Eq. (28), we obtain

Fc ¼ a
Xn�1
j¼1

1

ljþ1 þ lj

pjþ1 � pj

ljþ1
�

pj � pj�1

lj

� �2

þ
Xn

j¼0

bjðpj � qjÞ
2. (29)

The first summation of this equation reflects the smoothness, while the second summation reflects the difference

between the curves before smoothing and after smoothing. Both of them should be minimal, which is achieved through

setting the derivatives of Fc with respect to piði ¼ 0; 1; . . . ; nÞ equal to zero. This gives

½A�½P� ¼ ½Q�, (30)

where A is a matrix with a bandwidth of five,

A ¼

c0 d0 e0

b1 c1
. .
. . .

.

a2
. .
. . .

. . .
. . .

.

. .
. . .

. . .
. . .

.
en�2

. .
. . .

. . .
.

dn�1

an bn cn

2
6666666666664

3
7777777777775
.

In our simulations, the constants bj are set to be a unit value. The smoothing factor a is related to li (i ¼ 1,y,n) and

may be obtained by numerical tests. We adopt the following procedure. Suppose the minimum value of li (i ¼ 1,y,n) is

lmin, we write a ¼ Cl3min where C is a coefficient. Numerical tests in Fig. 3 show that a number between 5 and 10 is a

good choice for C. It should also be mentioned that the boundary nodes Q0 and Qn are constrained and they are equal

to P0 and Pn, respectively, which may be achieved simply by taking d0 ¼ e0 ¼ an ¼ bn ¼ 0.
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4. Numerical results

Simulations based on the above procedure are first made for wave motions in a rectangular tank and for progressive

waves in a numerical tank. The results obtained are compared with published data for validation. Extensive simulations

are then made for a wedge in a tank, and for single and twin wedges in forced motions. The second-order theory is also

used in several cases for comparison.
4.1. Free oscillation problems

The first validation case concerns a free oscillation problem in a rectangular container with length L and depth

h ¼ L=2, as shown in Fig. 4. The initial wave elevation and the velocity potential on the free surface are given as

Zðx; t ¼ 0Þ ¼ A cosð2px=LÞ,

fðx; Zðx; 0Þ; t ¼ 0Þ ¼ 0,

respectively, where A is the wave amplitude. The analytical solutions of first- and second-order wave elevation at

x ¼ L=2 for this case have been given by Wu and Eatock Taylor (1994)

Zð1Þðx; tÞ ¼ a cos ðo2tÞ cos ðk2xÞ, (31)

Zð2Þðx ¼ L=2; tÞ ¼
1

8g
2ðo2AÞ2 cos 2o2tÞ þ

A2

o2
2

ðk2
2g2 þ o4

2Þ

�

�
A2

o2
2

ðk2
2g2 þ 3o4

2Þ cos o4tÞ

�
, ð32Þ

where

ki ¼ ip=L ði ¼ 1; 2; 3; . . .Þ; oi ¼ ½kig tanh ðkihÞ�
1=2 ði ¼ 1; 2; 3; . . .Þ.

This result will be used for validation below.

In the simulation, the finite element nodes are uniformly distributed along the free surface and the bottom of the

container. A procedure similar to Eq. (25) is used along the depth to have smaller elements near the free surface. An

initial mesh is shown in Fig. 5 with NF ¼ 120 uniform segments on the free surface, NB ¼ NF=2 uniform segments on

the bottom and NH ¼ 40 nonuniform segments on the side walls. Two cases at A=h ¼ 0:05 and 0.1 are considered. The

step of nondimensional time t ¼ t=
ffiffiffiffiffiffiffiffi
h=g

p
is set to be 0.05 for the former and 0.025 for the latter. It is found that

smoothing needs to be applied regularly. The mesh at t ¼ 4:9 without smoothing is shown in Fig. 6, and the simulation

crashes subsequently. When smoothing is applied every 20 time steps, the result becomes stable and the mesh at t ¼ 12

is shown in Fig. 7. The numerical results with two different meshes are shown in Fig. 8, together with the linear solution

plus the second-order solution obtained from Eqs. (31) and (32). The figure suggests that the numerical simulation is

convergent and provides good accuracy.
o

y

x

h

L

Fig. 4. Sketch of a container.
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Fig. 6. Mesh at t ¼ 4:9 without smoothing.

Fig. 7. Mesh at t ¼ 12 with smoothing.

Fig. 5. An initial mesh for a container with 2807 nodes and 5372 elements.
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4.2. Wave tank problems

We next consider wave propagation generated by a piston-type wave maker installed at the left-hand side of a

numerical tank. The wave-maker undergoes motion with the following horizontal velocity:

UðtÞ ¼ oA cos ot, (33)

where o and A are the motion frequency and amplitude of the wave-maker, respectively. The case chosen is that studied

by Lin et al. (1984) with h ¼ 0:6m, L ¼ 9m, A ¼ 0:05h and o ¼ 1:5539
ffiffiffiffiffiffiffiffi
g=h

p
. An initial mesh with NF ¼ 200,

NB ¼ 150, NH ¼ 20 on the left-hand side of the tank and 16 on the right is shown in Fig. 9. This corresponds to 2423

nodes and 4458 elements. The damping zone is applied at the far end over one wave length. Fig. 10 gives the wave

histories at x ¼ 1:167 h ¼ 0:078L, where again x is measured from the left-hand end of the tank, with two different time

steps, where T ¼ 2p=o. It clearly shows that convergence in the time discretization has been achieved. The results have

been compared visually with those by Lin et al. (1984) and no visible difference is found.

Further validation is made by making comparison between the present fully nonlinear result and the solutions

obtained from the perturbation method. In this method the first- and second-order velocity potentials satisfy the

Laplace equation in the fluid domain,

r2fðkÞ ¼ 0 ðk ¼ 1; 2Þ in Oð0Þ, (34)
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Fig. 10. Wave histories in the tank at x ¼ 1:167h.

Fig. 9. An initial mesh with 2423 nodes and 4458 elements.

0 5 10 15 20
-2

-1

0

1

2

 Fully nonlinear (NH=20, NF=60);
 Fully nonlinear (NH=40, NF=120);
 First order plus second order (Wu & Eatock Taylor, 1994)

(b)

η/
A

τ

0 5 10 15 20
-2

-1

0

1

2

3

(a)

η
/A

τ

Fig. 8. Wave histories at x=L ¼ 0:5: (a) A=h ¼ 0:05; (b) A=h ¼ 0:1.

C.Z. Wang, G.X. Wu / Journal of Fluids and Structures 22 (2006) 441–461450
and they are subject to the conditions on the mean positions of the boundaries. They can be, given as

qfðkÞ

qy
�
qZðkÞ

qt
¼ f 0k on S

ð0Þ
f , (35)

qfðkÞ

qt
þ gZðkÞ ¼ f 00k on S

ð0Þ
f , (36)

qfðkÞ

qn
¼ f k on Sð0Þw , (37)
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qfðkÞ

qy
¼ 0 on y ¼ �h, (38)

where Oð0Þ is a time-independent fluid domain bounded by the tank bottom, the mean surface of the wave-maker Sð0Þw ,

the still water surface S
ð0Þ
f and the far end of the tank. The terms f 0k, f 00k and fk are given, respectively, as

f 0k ¼

0 ðk ¼ 1Þ;

qfð1Þ

qx

qZð1Þ

qx
� Zð1Þ

q2fð1Þ

qy2
ðk ¼ 2Þ;

8><
>:

f 00k ¼

0 ðk ¼ 1Þ;

�
1

2
rfð1Þ
		 		2 � Zð1Þ

q2fð1Þ

qy qt
ðk ¼ 2Þ;

8><
>:

f k ¼

�U ðk ¼ 1Þ;

X
q2fð1Þ

qx2
ðk ¼ 2Þ;

8><
>:

where X ¼ A sin ot is due to the motion of the wave-maker. The closure of this problem can be achieved by including

the initial and the radiation conditions. It is then solved through the quadrilateral-based FEM with quadratic shape

functions. For the wave tank problem, 80 segments in the horizontal direction and 7 in the vertical direction are used,

which corresponds to 1855 nodes and 560 elements. The results are shown in Fig. 11 together with the fully nonlinear

solution. It can be seen that the linear plus second-order solution is in very good agreement with the fully nonlinear

result for this case.
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Fig. 11. Comparison of wave histories at x ¼ 1:167h.
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Fig. 12. Wave history in the tank at A=h ¼ 0:1.
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After these comparisons, a fully nonlinear simulation is made for the wave-maker at larger amplitude. A case at

A=h ¼ 0:1 is considered. The wave history at the same location as above is shown in Fig. 12 and the wave profile at

t ¼ 24:26 is shown in Fig. 13. As expected, the nonlinear features in these figures become more evident.

We now put a wedge in the tank at x ¼ 10h. The body is symmetric about a vertical line and Fig. 14 shows half of the

wedge. The case considered corresponds to d ¼ 0:4h and b ¼ 751. The motion of the wave-maker still follows that

defined in Eq. (33). The motion amplitude is taken as A ¼ 0:05h and the frequency remains the same. The wave profile

at t ¼ 58:63 is shown in Fig. 15. In the simulation, the wetted surface of the body may vary significantly with time, and

the number of nodes on the surface will follow this change to ensure the sizes of the elements attached to the body will

remain more or less the same.
Fig. 13. Wave profile in the tank at t ¼ 24:26 ðA=h ¼ 0:1Þ.

a

β

d

Fig. 14. Sketch of a floating wedge.

Fig. 15. Wave profile at t ¼ 58:63.
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Fig. 16. Wave history at x ¼ 1:167h.



ARTICLE IN PRESS

0 20 40 60 80
-0.50

-0.25

0.00

0.25

0.50

F
y/ρ

ga
2 A

τ

0 20 40 60 80
-1.0

-0.5

0.0

0.5

1.0

F
x/ρ

ga
2 A

τ

Fig. 17. History of force on a wedge in the tank.
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The wave history at x ¼ 1:167h is shown in Fig. 16. The difference between this case and that in Fig. 10 is that waves

will be reflected from the body after several periods. The corresponding hydrodynamic forces without the contribution

of initial buoyancy are shown in Fig. 17, and they are obtained through the method in Wu and Eatock Taylor (1996,

2003).
4.3. Floating wedges in forced oscillation

The next case considered is a wedge undergoing motion with the following vertical or horizontal displacement

X ¼ A sin ot. (39)

The centre-line of the wedge is taken as the y-axis. In order to avoid an abrupt start and allow a gradual development

of the radiated potential, the body surface boundary condition is multiplied by the following modulation function, as

used by Isaacson and Ng (1993)

MðtÞ ¼

1
2
½1� cos ðpt=2TÞ�; to2T ;

1; tX2T T ¼ 2p
o


 �
:

(
(40)

We take d ¼ h=8, b ¼ 601 and A=d ¼ 0:5, which is relatively large motion. Two cases of vertical motion at o ¼
2
ffiffiffiffiffiffiffiffi
g=h

p
and o ¼ 3

ffiffiffiffiffiffiffiffi
g=h

p
are calculated and the wave elevation at x ¼ �2d is shown in Fig. 18, where ō ¼ o=

ffiffiffiffiffiffiffiffi
g=h

p
. The

length of the computational domain on each side of the body is 3l (l is the wavelength) and is divided into 100 intervals

at the initial time step; 20 intervals are used on the initial body surface and 20 intervals are used along the depth. On the

seabed, the number of intervals is two-fifths of that on the free surface. It should be noticed that the number of elements

on the free surface and the body surface varies with time. The time step is taken as T=100. Smoothing and remeshing

are applied every 20 steps. The nonlinearity at o ¼ 3
ffiffiffiffiffiffiffiffi
g=h

p
is stronger, because this corresponds to a shorter wave.

Another simulated case corresponds to a wedge of b ¼ 451 in vertical motion at A=d ¼ 0:5 and o ¼ 2
ffiffiffiffiffiffiffiffi
g=h

p
. The

wave histories are shown in Fig. 19. For the heave motion, the flow should be symmetric about the centre-line of the

wedge. However, due to the asymmetric nature of the unstructured mesh, symmetry in results may not be achieved

because of insufficient accuracy. We plotted the results at x ¼ �2d in Fig. 19(a) and x ¼ �3d in Fig. 19(b). The figures

clearly show that the symmetry is accurately maintained. For the linear problem, the wave histories near and away from

the body should all be sinusoidal when the motion has become fully periodic, even though their amplitudes may be

different. When nonlinear effects are strong, the higher-order components become significant. The wave histories at

different locations will have not only different amplitudes but also different shapes, as shown in Fig. 19.
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Fig. 18. Wave histories near the wedge with b ¼ 601 in vertical motion (x ¼ �2d and A=d ¼ 0:5): (a) ō ¼ 2:0; (b) ō ¼ 3:0.
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Fig. 19. Wave histories near the wedge with b ¼ 451 in vertical motion (ō ¼ 2:0 and A=d ¼ 0:5): (a) x ¼ �2d; (b) x ¼ �3d.
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To compare the present simulation with the result from the corresponding perturbation solution, the wedge with

b ¼ 451 in vertical motion is calculated here for several amplitudes. In this case, the second-order body surface

boundary condition may be expressed as

qfðkÞ

qn
¼ f k on S

ð0Þ
b , (41)
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A=d ¼ 0:2; (c) A=d ¼ 0:4.

C.Z. Wang, G.X. Wu / Journal of Fluids and Structures 22 (2006) 441–461 455
where S
ð0Þ
b is the mean body surface and fk (k ¼ 1,2) are given as

f k ¼

dX

dt
ny ðk ¼ 1Þ;

�X ny
q2fð1Þ

qy2
þ nx

q2fð1Þ

qx qy

 !
ðk ¼ 2Þ:

8>>>><
>>>>:

We consider a case with o ¼ 3
ffiffiffiffiffiffiffiffi
g=h

p
at A=d ¼ 0:1; 0:2 and 0:4. The waves at x ¼ �2d are given in Fig. 20. The figure

shows that the results from the fully nonlinear solution and the perturbation theory are in good agreement at

A=d ¼ 0:1. Noticeable differences appear at A=d ¼ 0:2 and become significant at A=d ¼ 0:4. Further results from the

nonlinear simulation for wave elevation at x ¼ �3d and for force are given in Fig. 21. The nonlinear features become

very strong when the amplitude increases. Further simulation is made for a wedge of b ¼ 601 in the identical condition.

The results are shown in Fig. 22. The nonlinear features are still quite visible but weaker than those corresponding to

b ¼ 451, as the waterline is more ‘wall-sided’ in this case.

The case of a wedge of b ¼ 451 in sway motion at A=d ¼ 0:5 and o ¼ 2
ffiffiffiffiffiffiffiffi
g=h

p
is also considered. The wave elevation

and forces are shown in Figs. 23 and 24. It can be seen from Fig. 23 that the difference between phases of the wave

histories at x ¼ �2d and 2d is about half a period. In fact, strictly speaking, after a sufficiently long period of time,

these two curves should become identical if one of them is moved along the horizontal direction. This can be explained

using the argument in Wu (1993, 2000). We can define z pointing out of the paper. One can view the same problem

either along or against the z direction. The difference between these two cases is that there will be a phase difference of

half a period when the problem becomes periodic. As a result, the horizontal force will have components at ð2nþ 1Þo,
while the vertical force components will be at 2no, (n ¼ 0,1,2y) This can be seen in Fig. 25. In fact, we may write

F

rgdA
¼

a0

2
þ
X1
i¼1

½Ai cos ðiotÞ þ Bi sin ðiotÞ�. (42)
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Fig. 21. Wave histories at x ¼ �3d and force histories for a wedge with b ¼ 451 and ō ¼ 3:0 in vertical motion.
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Fig. 22. Wave histories at x ¼ �3d and force histories for a wedge with b ¼ 601 and ō ¼ 3:0 in vertical motion.
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Fig. 23. Wave histories near the wedge in sway motion (ō ¼ 2:0 and A=d ¼ 0:5).
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Fig. 24. Hydrodynamic forces on the wedge in sway motion (ō ¼ 2:0 and A=d ¼ 0:5).
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The results using the Fourier analysis are shown in Fig. 25. It can be seen that the horizontal force is dominated by the

component corresponding to i ¼ 1, while the vertical force by i ¼ 0 and 2.

A wedge in large heave motion relative to the water depth is also considered. In this case, the elements below the body

can be squeezed or stretched, similar to the 3-D case considered by Wu and Hu (2004). It is vital that remeshing is

applied regularly to avoid any over-distorted elements. We consider the case with A=d ¼ 0:4, o ¼ 2
ffiffiffiffiffiffiffiffi
g=h

p
, h ¼ 2d and

b ¼ 751. This means that the distance from the tip of the wedge to the bottom of the fluid changes from 0.6d to 1.4d.

The wave history at x ¼ 2d is shown in Fig. 26 and the corresponding hydrodynamic force is given in Fig. 27. The wave

is highly nonlinear. Some snapshots of the mesh at different time steps are shown in Fig. 28 and the result of remeshing

is evident.

Twin-wedges are also considered here. Recently Wu (2006) solved the water entry problem for this case through a

three-stage approach. He found that the pressure between the wedges can increase significantly as the wedges move into
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the water. Here both wedges have b ¼ 751. The symmetry line of the two wedges is taken as the y-axis and the centre-

lines of the two bodies are located at x ¼ �1:5d and 1:5d. The results for heave motion ato ¼ 2
ffiffiffiffiffiffiffiffi
g=h

p
, A=d ¼ 0:1 and

h ¼ 2d are shown in Figs. 29–31. The wave at x ¼ 0 is much larger than those at x ¼72d, 73d. The envelope of its

amplitude is also very different. In fact it resembles to some extent the motion of sloshing waves in a tank, which is



ARTICLE IN PRESS

Fig. 28. Meshes in the case of h ¼ 2d and A=d ¼ 0:4.
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clearly because the location is confined within two bodies. The forces on both wedges should be identical and therefore

the results are given only for one wedge. A difference between the twin-wedges and the single wedge in heave is that

there is a horizontal force here, as shown in Fig. 31.
5. Conclusions

An unstructured-mesh-based FEM has been developed to analyze fully nonlinear wave interactions with non-wall-

sided floating bodies. The mesh allows far more flexibility and more rational distribution of elements in a complex

domain and for cases in the complex flow structure. The adoption of the Runge–Kutta method for integration with

respect to time provides high-order accuracy without the need for extensive interpolation between results from different

meshes. The introduction of the B-Spline to facilitate remeshing has maintained the quality of the mesh throughout the

simulation. The use of the energy method for smoothing also removes the restriction of Longuet-Higgins and Cokelet’s

method to a uniform mesh. Extensive simulation and comparison have demonstrated the effectiveness of the method.

More work is, however, needed to deal with cases when the wave overturns and ultimately breaks.
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Fig. 30. Meshes for the twin-wedges at different time steps.
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